
Distributed Storage Systems for Data Intensive Computing

Sudharshan S. Vazhkudai∗ Ali R. Butt† Xiaosong Ma‡

Abstract

In this chapter, we will present an overview of the utility ofdistributed storage systems in supporting modern applications
that are increasingly becoming data intensive. Our coverage of distributed storage systems will be based on the requirements
imposed by data intensive computing and not a mere summary ofstorage systems. To this end, we will delve into several as-
pects of supporting data-intensive analysis, such as data staging, offloading, checkpointing, and end-user access to terabytes
of data, and illustrate the use of novel techniques and methodologies for realizing distributed storage systems therein. The
data deluge from scientific experiments, observations, andsimulations is affecting all of the aforementioned day-to-day oper-
ations in data-intensive computing. Modern distributed storage systems employ techniques that can help improve application
performance, alleviate I/O bandwidth bottleneck, mask failures, and improve data availability. We will present key guiding
principles involved in the construction of such storage systems, associated tradeoffs, design, and architecture, allwith an eye
toward addressing challenges of data-intensive scientificapplications. We will highlight the concepts involved using several
case studies of state-of-the-art storage systems that are currently available in the data-intensive computing landscape.

1 Data Intensive Computing Challenges
The advent of extreme-scale computing systems, e.g., Petaflop supercomputers, cyber-infrastructure, e.g., TeraGrid, and

experimental facilities such as large-scale particle colliders, are pushing the envelope on dataset sizes. Supercomputing
centers routinely generate huge amounts of data, resultingfrom high-throughput computing jobs. These are often result-
datasets or checkpoint snapshots from long-running simulations. For example, the Jaguar petaflop machine [9] at Oak Ridge
National Laboratory, which is No. 2 in the Top500 supercomputers as of this writing, is generating terabytes of user datawhile
supporting a wide-spectrum of science applications in Fusion, Astrophysics, Climate and Combustion. Another exampleis
the TeraGrid, which hosts some of NSF’s most powerful supercomputers such as Kraken [5] at the University of Tennessee,
Ranger [7] at Texas Advanced Supercomputing Center and BlueWaters at National Center for Supercomputing Applications,
and are well on their way to produce large amounts of data. Accessing these national user facilities, is a geographically
distributed user-base with varied end-user connectivity,resource availability, and application requirements. At the same time,
experimentation facilities such as the Large Hadron Collider (LHC) [26] or the Spallation Neutron Source (SNS) [6, 25]
will generate petabytes of data. These large datasets are processed by a geographically dispersed user base, often times, on
high-end computing systems. Therefore, result output datafrom High-Performance Computing (HPC) simulations are not
the only source that is driving dataset sizes. Input data sizes are growing many fold as well [6, 26, 61, 4].

In addition to these high-end systems, commodity clusters are prevalent and the data they can process is growing manifold.
Most universities and organizations host mid-sized clusters, comprising of hundreds of nodes. A distributed user basecomes
to these machines for a variety of data intensive analyses. In some cases, compute intensive operations are performed at
supercomputing sites, while post-processing is conductedat local clusters or high-end workstations at end-user locations.
Such a distributed user analysis workflow entails intensiveI/O. Consequently, these systems will need to support:

• the staging in of large input data from end-user locations, archives, expermental facilities and other compute centers
• the staging out terabytes of output, intermediate and checkpoint snapshot data to end-user locations or other compute

destinations
• the ability to checkpoint terabytes of data at periodic intervals for a long-running computation
• the ability to support high-speed reads to support a runningapplication

In the discussion below, we will highlight these key data intensive operations, the state-of-the-art and the challenges and gaps
therein to set the stage for how distributed storage systemscan help in optimizing them.

∗Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA vazhkudaiss@ornl.gov
†Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA butta@cs.vt.edu
‡Department of Computer Science, North Carolina State University ma@cs.ncsu.edu

1



Data Staging and Offloading Large input, output and checkpoint data is required to be staged in and out of these systems.
With the exponential growth in application input and outputdata sizes, it is impractical to store all user data indefinitely at
HPC centers. Traditionally, centers have operated under the premise that users come to them with all of their storage and
computing needs. The legacy of this approach still weighs heavily when it comes to provisioning a center as significant
portions of the operational budget is spent on large data stores and archives. End-user data services such as staging and
offloading are key I/O operations that can help streamline center scratch space consumption and improve its serviceability.

Timely data offloading is necessary to both protect the job output data from center purge policies [3, 1] as well as to to
deliver data on a deadline. This is largely left to the user and is a manual process, wherein users stage out result-data using
point-to-point transfer tools such as GridFTP [16],sftp, hsi [33], andscp. The inherent problem with several point-to-
point transfer tools, used to offload data from supercomputers, is that they are only optimized for transfers between two
well-endowed sites. For example, the TeraGrid [10] offers several optimizations (TCP buffer tuning, parallel flows, etc.) for
GridFTP transfers between the various site pairs that make up the TeraGrid, which are already well connected (10-40 Gbps
links). In contrast, data staging and offloading involve providing access to the data to the end-user. How does one move data
efficiently from well-provisioned HPC centers to the outside world? More often, users come from smaller universities and
organizations with varied connectivity to the HPC center. Thus, efficient and timely staging and offloading of data cannot be
ignored as a “last-mile” issue.

The need for such a service is also fueled by the, often, distributed nature of computing services and users’ job workflow,
which implies that data needs to be shipped to where it is needed. For example, several HPC applications analyze intermediate
results of a running job, through visualizations, to study the validity of initial parameters and change them if need be.This
process requires the expeditious delivery of the result-data to the end-user visualization application for online feedback. A
slightly offline version of this scenario is a pipelined execution, where the output from one computation at supercomputer
site A is the input to the next stage in the pipeline, at site B.Large-scale user facilities such as the Spallation NeutronSource
(SNS) [6] and Earth System Grid (ESG) [2] that employ distributed workflows are already facing these problems and require
efficient data staging and offloading techniques.

The inverse of delivering data to the end-user is to stage thedata from a source location to an HPC center. Modern
applications usually encompass complex analyses, which can involve staging gigabytes to terabytes of input data, using
point-to-point transfer tools (e.g., scp, hsi [27]), from observations or experiments. Many times, the applications also involve
comparing the above analyses data against large-scale simulation results to see how theoretical models fit real experimen-
tal results. Thus, input data can originate from multiple data sources ranging from end-user sites, remote archives (e.g.,
HPSS [27]), Internet repositories (e.g., NCBI [49], SDSS [61]), collaborating sites and other clusters that run piecesof the
job workflow.

Once submitted, the job waits in abatch queueat the HPC center until it is selected for running, while the input data
“waits” on the scratch space. HPC centers are heavily crowded and it is not uncommon for a job to spend hours—or even
days on end—in the queue. The time a job takes to complete, i.e., (wall time + wait time), is also the time the input data
spends in the scratch space, in the best case when the data is staged at job submission. In the worst case, which is more
common, the data waits longer as users conservatively (manually) stage it in much earlier than job submission, let alonejob
startup. Thus, there is the need for a timely staging in of jobinput data so it is able to minimize resource consumption and
exposure of data to failure.

From the above usecases, we can state the problem as:Offload by a specified deadline to avoid being purged; Or, Deliver
by a specified deadline to ensure continuity in the job workflow. How can distributed storage systems help address this
problem? Solutions in this regard can have a profound impacton data intensive computing.

Checkpointing Checkpointing is an indispensable fault tolerance technique adopted by long-running data intensive appli-
cations. These applications periodically write large volumes of snapshot data to persistent storage in an attempt to capture
their current state. In the event of a failure, applicationsrecover by rolling-back their execution state to a previously saved
checkpoint.

The checkpoint operation and the associated data have unique characteristics. First, applications have distinct phases
where they compute and checkpoint; often, these phases occur at regular intervals. Second, checkpointing is a write I/O
intensive operation. For instance, consider a 10,000 core job that runs for 12 hours and checkpoints every half hour on
a system which has 2 GB of memory. For this job, in the worst case, when all of the memory per core is saved as state
information, 500TB of checkpoint data is produced during a run. Such data volumes can overwhelm any storage system. As
we scale to petaflop systems, this problem is likely to get acute with the increase in the number of computing cores and the
amount of data to be saved at each timestep. Under these conditions, high-resolution checkpointing can easily overwhelm the
I/O system. Third, checkpoint data is often written once andread only in case of failure. This suggests that checkpoint images

2



are seldom accessed beyond the lifetime of an application run or even during the run. Finally, checkpointing, however critical
it may be for reliability, is pure overhead from an application standpoint, as time is spent away from useful computation.

Data intensive applications usually deal with checkpointing operations in the following ways. First is node-local storage.
It is common practice for jobs running on the individual nodes in a distributed computing environment (e.g., cluster or a
desktop grid) to checkpoint to their respective node-localstorage. Local storage is dedicated and is not subject to thevagaries
of network file system I/O traffic. Moreover, local I/O on evenmoderately endowed desktops offers around 50-100MB/s.
However, local storage is bound to the volatility of the compute node itself. Thus, the locally stored data is lost when the
node crashes. Moreover, there is no node-local storage on extreme-scale machines as the the disk is one more component
that can fail.

Second is shared file systems. Compute nodes can also checkpoint to a shared, central file server. However, shared file
servers are crowded with I/O requests and often have limitedspace. Shared file servers, accessible to desktop grid-like
distributed environments, offer merely tens of MB/s as I/O bandwidth. Clusters usually employ sophisticated SAN storage
that are able to offer higher throughput. However, the hundreds of nodes in a cluster, on which processes of a parallel
application run, can flood the central server with simultaneous checkpointing I/O operations. In extreme-scale systems–with
thousands of processors–the I/O bandwidth bottleneck for checkpointing in writing to central file system (albeit a parallel file
system), can be profound. Even though parallel file systems (e.g., Lustre, PVFS, GPFS) offer high I/O throughput (order of
tens of GB/s in extreme-scale systems), historically, I/O bandwidth has not scaled with processor frequencies. Further, when
the I/O channel is shared across multiple applications, theeffective throughput achieved by any given application significantly
deteriorates, even in such high-end storage systems. Can novel distributed storage solutions help improve the I/O bandwidth
bottleneck seen in checkpointing I/O?

End-User Analysis For most end-users of scientific data, certain stages of their data intensive tasks often require computing,
data processing, or visualization at local computers and high-end personal desktop workstations. A local workstationis and
will remain an indispensable part of end-to-end scientific workflow environments, for several reasons. First, it provides users
with interfaces to view and navigate through data, such as images, timing and profiling data, databases, and documents.
Second, users have more control over hardware and software on their personal computers compared to on shared high-end
systems (such as a parallel computer), which allows much greater exibility and interactivity in their tasks. Third, personal
computers provide convenience in connecting users’ computing/visualization tasks with other tools used daily in their work
and collaboration, such as editors, spreadsheet tools, webbrowsers, multimedia players, and visual conference tools. Finally,
compared to high-end computing systems that are often builtto last for years, desktop workstations at research institutions
get updated more often and typically have higher compute power than individual nodes of a large, parallel system. This
is especially advantageous for running sequential programs, and there exist many essential scientific computing toolsthat
are not parallel. Applications that were once beyond the capability of a single workstation are now routinely executed
on personal desktop computers. The combination of fast CPU and large memory provides scientists with a familiar–yet
powerful–computing platform right in their office.

While personal computers are up to their important roles in scientific workflows with advantages in human-computer
interface and processing power, storage nowadays usually becomes their limiting factor. Commodity desktop computersare
often equipped with limited secondary storage capability and I/O rates. Shared storage in university departments and research
labs are mostly provided for hosting ordinary documents such as email and web-pages, and usually comes with small quota,
low bandwidth, and heavy workloads. This imbalance betweencompute power and storage resources leaves scientists with
the unattractive choice of remote data access when processing datasets larger than their workstations’ available diskspace.
However, the wide-area network latencies kill performance. How can distributed storage systems help sustain end-user
analysis on high-end local workstations?

2 Demands and Requirements for Distributed Storage Systemsin Data Intensive Science

Distributed storage is an increasingly important component of end-to-end scientific computing workflows, due to the fact
that most of such workflows are inherently distributed themselves. In the majority of cases, data acquisition sites (observatory
or experimental instruments), supercomputers or large clusters, and scientific data centers are located outside of scientists’
local organization and must be accessed remotely. Data generated by the data collection, experiment, or simulation processes,
on the other hand, will not be stored on the data generation site, whose storage facilities are often precious shared resources
and only used for transient data storage to help the active tasks running on the facility. Scientific computing users usually
have to move their data to their home institute for post-processing, or on archival system for affordable long-term storage,
or, as in many cases, both. Bringing data back to their local clusters allows for more efficient data processing, analysis, and
visualization, and eventually in most situations scientists view and interact with their data on their office workstations with

3



display devices. Meanwhile, valuable datasets are often archived on tape systems to prepare for potential, while relatively
infrequent, reuse.

While scientific data users have managed to get their job donewith basic data movement and management tools, such as
FTP, SCP, GridFTP, several factors and trends intensify theneed for more powerful distributed storage support and possible
paradigm shifts in data storage and movement models. First,there is a growing gap in system sizes between data generation
sites (experimentation facilities and supercomputers) and consumption sites (local clusters and office workstations). Without
efficient distributed storage infrastructures to aggregate capacities and bandwidths, the use of Peta-scale and Exa-scale com-
puting enabled by cutting-edge supercomputers will be severely limited by scientists’ data post-processing storage facilities.
Second, the increasing complexity of scientific computing workflows makes it harder and harder to stay with labor-intensive
and error-prone manual operations. In addition, such manual operations or scripts are often point-to-point processesthat do
not easily adapt to changes in computing/storage platforms, nor do they naturally support data sharing or collaboration. Fi-
nally, point-to-point data movement and single-site storage will not be able to effectively utilize recent technologyadvances,
such as P2P storage and data distribution, volunteer computing, and cloud computing.

One may wonder whether existing distributed storage and data sharing solutions, mostly developed for commercial or
entertainment applications, can be applied to scientific computing. Unfortunately, although the storage, processing, and
sharing of scientific data can significantly benefit from manycomponents of existing distributed storage solutions, these
processes also possess many unique challenges and requirements that have not been addressed by systems in existence:

• Level of System integration: Distributed storage systems for data-intensive science need to locate a balance point
between tightly coupled systems that resemble parallel filesystems, and loosely coupled systems used in P2P data
sharing. On one hand, the separation between storage resources and high-level storage structures is highly desirable
to accommodate diverse and ever-changing hardware and software components. On the other hand, data-intensive
scientific applications, unlike entertainment data sharing and many other commercial applications, adopt a more tightly
coupled computation model, and often demand highly optimized performance.

• Namespace:Distributed storage systems need to be able to identify datasets stored using well-defined names. These
range from self-identifying uniform resource indices (URI) to simple file names. These are then needed to be organized
in some form of a flat or a hierarchical namespace. A flat namespace is easy to implement, but may not scale to large
sizes, whereas a hierarchical namespace is flexible but moreinvolved.

• Granularity: Typically, media sharing is done at the granularity of entire files. However, the size of datasets involved
in modern scientific computing, and the streaming approach adopted in typical workflows entail that the scientific data
is handled in small fixed size portions or chunks. The size of chunks can vary from a few KBs to several hundreds of
MBs. Consequently, a data transfer architecture designed for scientific computing must efficiently handle varying size
chunks, as well as issues of maintaining, finding, and identifying chunks belonging to specific datasets.

• Resource model:While dedicated, high-end resources are universally equipped at supercomputing centers, the dis-
tributed end-to-end scientific computing workflow providesmany practical use cases for contributed (or volunteer)
storage, where storage resource owners donate spaces to be aggregated into large, shared storage capacities. This is
partly due to that scientific data are often considered less sensitive compared to commercial data, making storage on
individually owned and managed devices more acceptable. Also, often resource-constrained, scientists tend to be more
open with distributed storage solutions that have low cost,in terms of both hardware purchase and system management.

• Performance Vs. Space Utilization:A key design consideration for distributed storage systemsis to strike a balance
between performance and space tradeoffs. What is the goal ofthe system? Is it to use a set of distributed resources to
provide more storage than what is feasible? Or, is it to bringa set of distributed storage resources to provide faster data
access performance? Or, can we achieve a balance between these goals?

• Reliability: A distributed storage system needs to be able to store data ina reliable fashion. Since such a storage
system can be constructed out of dedicated or commodity components, the reliability semantics has to be robust enough
to accommodate any underlying fabric. In any case, recent studies show that the rate of storage system failures is
high [60, 51, 62] and that ensuring reliability in large-scale installations is complex. Any distributed storage system will
need to support a combination of standard replication and erasure coding schemes depending on space and performance
tradeoffs.

• Transparency: Transparency is a highly desired feature for data-intensive science. In many situations, transparency
translates into ease of use, portability, and reusability that can be of more value than performance. In particular,
scientific application developers and users are typically domain scientists, who hesitate to invest time and effort in
configuring distributed storage services, or to modify existing applications. In addition, transparent storage solutions
allow existing applications and workflows to evolve with newhardware and software upgrades, which is worthwhile

4



compared to the lost optimization opportunities when more lower-level design and implementation details are exposed
to applications and users.

• Deployability: Any practical data storage scheme should provide abstractions that can be easily integrated with the
application base, and should be minimally intrusive on existing software to ensure adoption by system administrators.
Ease of deploying, maintaining, and using a particular service is key to its success as a practical system. For instance,a
distributed storage service that uses the standard NFS [20]protocol is more likely to see actual deployment compared
to a service which requires users to link with customized libraries, or worse make changes to their code base.

• Quality of Service: Quality of service metrics for a distributed storage systemrange from ensuring that the datasets
are safely stored, to ensuring integrity and correctness onretrievals, to securing the datasets against malicious users
and hosts and to guaranteeing performance. A loosely coupled, contributory storage poses fundamental challenges to
ensuring quality of service.

• Bulk Data Optimizations: Distributed storage for data-intensive science has to be designed with handling massive
data in mind, in terms of dataset size, access granularity, or both. In particular, with Peta-scale computing centers be-
coming the main stream, there is a growing disparity betweena simulation site and other parts of a scientific computing
workflow in storage capacity and bandwidth.

• Leverage Commodity Components:Finally, an ideal service will utilize commodity off-the-shelf components for
realizing its goals. This is critical, as cost is a major obstacle in large-scale HPC installations, and relying on specialized
hardware may make an approach economically non-viable. More and more, there is a wealth of commodity components
at end-user sites, in the data path and at the HPC center. Distributed storage systems need to be able to utilize these in
a concerted fashion.

The end-to-end data path in scientific computing throws opennumerous opportunities to construct novel distributed storage
systems that can be brought to bear on I/O intensive tasks. Inthe following case studies, we will highlight several state-of-
the-art distributed storage solutions that are built from novel combinations of storage elements available in the end-to-end
I/O stack. We will further analyze how these systems addressthe data intensive computing challenges.

3 Case Studies in Distributed Storage Systems

3.1 Google File System

The Google File System (GFS) [32] is a distributed file systemdeveloped by and deployed at Google, specifically designed
to its web data processing and search engine workloads. GFS’design principles are based on Google’s data access workload
as well as computing platform characteristics.

As Google periodically crawls the web space, downloads web contents, and index es documents to provide continuous
and scalable service to many concurrent search engine users, it creates many large files and most of its files are seldom
overwritten. Instead, its write workload is heavily made upby appends, where it is common for multiple clients to concur-
rently append to a shared file. Meanwhile, overall Google hasa read-intensive workload, with a large number of current
queries processed simultaneously. Several major GFS design decisions reflect these workload requirements. First, files are
partitioned into chunks, which are distributed to multipleserver nodes, for better access throughput. Second, the chunk size
is set at 64MB, much larger than block sizes used in traditional file systems, to reduce the metadata size and communica-
tion/management overhead. Third, GFS adopts a relaxed consistency model that targets Google’s appending-oriented file
mutations. In addition, the general optimization goal of GFS is made to prioritize high throughput over low latency.

Similarly, GFS is highly customized toward Google’s computing environment, which consists of large collections of
commodity nodes and heavily relies on hardware and softwareredundancy to protect against failures. GFS’ architecture
also reflects the same philosophy, where chunk replication plays a key role in both fault tolerance and scalable distributed
data accesses. A GFS cluster is made of one master node, multiple chunkserver nodes, and many client nodes. File chunks
are aggressively replicated (with a configurable replication degree, which is set at 3 by default). The chunk replicas are
intelligently placed to improve data availability and to enhance the network bandwidth utilization. The master nodes manages
metadata such as the name spaces, the file-to-chunk mappings, and the chunk locations. Google has demonstrated that with
its large chunk size, a single master node is capable of managing and serving large GFS clusters made of thousands of nodes.
This has inspired the single-master design in other distributed storage systems such as FreeLoader.

GFS’ data storage model and architecture works hand-in-hand with its application interfaces, such as the well-known
MapReduce model [29]. With MapReduce, more complex operations can be partitioned into many Map operations that
takes input data and generate intermediate results, both inthe form of key-value pairs, which are then sorted by the key
and passed to nodes that perform the result merging with Reduce tasks. Many of Google’s data processing tasks can be

5



expressed as a pipeline that consists of one or more MapReduce stages. With GFS providing the underlying distributed
chunk access services, MapReduce applications can easily perform distributed Map tasks and shuffle data to redistribute
intermediate results to reduce tasks. Also the chunk replication mechanism naturally supports the task replication performed
by MapReduce for better reliability. Hadoop [34], a popularopen-source MapReduce framework implemented by Apache,
comes with an open-source counterpart of GFS, called HDFS (Hadoop Distributed File System).

Given Google’s read- and append-intensive I/O workload andits loosely coupled distributed execution environments (as
opposed to supercomputers or clusters running parallel batch jobs), GFS is suitable for certain classes of scientific data
workloads, such as data centers that provides query, mining, and visualization services. On the other hand, though GFS is
designed for massive data processing, it is not optimized for highly synchronized, write-intensive applications suchas parallel
simulations.

3.2 FreeLoader

FreeLoader [70, 71] is a distributed volunteer storage framework developed at North Carolina State University and Oak
Ridge National Laboratory, which aggregates unused desktop storage space and I/O bandwidth into a shared cache/scratch
space. It was motivated by the observation that even with thethe proliferation of high-end systems (high-performance
parallel file systems, storage area clusters, data centers,and archival systems), there is a lack of end-to-end storagesupport
for scientists to accommodate, prepare, or consume data in their local computing environments. In particular, the “last mile”
in many scientific computing workflows requires data processing and visualization at personal computers, where there are
interactive devices as well as more user control on software/tools for viewing and navigating data. While personal computers
today are equipped with unprecedented processing power, I/O and storage are more than ever the weakest link in these
systems. Therefore, although recent technologies such as the multi-core architecture has brought personal computersthe
parallel processing capability to enable powerful desktopdata processing, the lack of storage space and I/O rates easily
prohibits their effective use for data intensive sciences.FreeLoader was proposed to enable these personal computersto pool
not only their idle storage spaces, but also under-utilizedI/O bandwidths, to create a shared space for scientists to work on
their data.

With FreeLoader, workstation owners within a local area network contribute unused disk space, similar to how volunteer
computing participants contribute idle CPU cycles using frameworks such as Condor [42] and Entropia [19]. To utilize
today’s high-speed local area networks for better data access rates, FreeLoader stripes datasets onto multiple participating
nodes (calledbenefactors). The aggregate storage space managed by FreeLoader is intended as a cache or scratch space,
rather than a general purpose file system or archival system that offer persistent, long-term storage of data. Instead, it targets
creating a space much larger than a typical workstation’s node-attached secondary storage, to enable scientists to process,
analyze, and visualize their “hot” datasets generated by data-intensive experiments or applications. As interest fades on
these datasets, they will be replaced by new datasets that are currently of interest to the local FreeLoader users. In addition,
such a distributed storage framework would also facilitatedata sharing, as colleagues in the same physical organization
tend to collaborate and access common datasets [37, 50]. Further, when scientists consume their data, they often work on
certain datasets for an extended period of time (typically days or weeks). Considering that data migration from archival
systems is limited by transfer rates that are significantly lower than local I/O or LAN throughput [40, 39, 72], as a storage
cache FreeLoader exploits data locality to reduce redundant and expensive remote I/O or data migration operations. In a
subsequent project [44], the FreeLoader authors also exploited further in this direction by using a local FreeLoader space to
only cacheprefixesof remotely stored datasets to hide the latency in remote data access with a reduced space cost. Such
prefix caching is coupled withcollective downloadingto achieve fast data transfer that makes remote data accesses feel like
speedy local FreeLoader space operations.

The FreeLoader storage system contends that such a storage model is practical and cost-effective, based on several obser-
vations. First, collectively a large amount of disk space remains under-utilized on personal computers within academic or
industry organizations. Studies have shown that on average, at least half of the disk space on desktop workstations is idle,
and the fraction of idle space increases as the disks become larger [12, 30]. In addition, most workstations are online for
the vast majority of the time [22]. Second, disks are cheap today and personal computers are more frequently updated and
upgraded compared to higher-end systems. At the same time, off-the-shelf shared storage solutions such as disk arrays and
SAN (Storage Area Network) systems are much more expensive and often out of reach for scientists. Therefore, frameworks
like FreeLoader allows people to pool distributed storage devices in a reasonably sized organization into a considerably
large, yet affordable, shared space. Third, scientific datause patterns have unique characteristics that allow for simplified
design, enabling FreeLoader as a user-level, light-weightsystem. For example, scientific datasets processed at scientists’
local environments are often immutable and are safely archived (typically at the mass storage centers co-located with super-
computers or web data repositories [49, 61, 67].). Also, datasets are large and often accessed sequentially. These features

6



provide FreeLoader with opportunities to focus more on providing a transparent shared storage space and efficiently reading
and writing bulk data, rather than traditional distributedstorage issues such as data consistency, concurrency control, and
reliability.

The FreeLoader architecture comprises contributing benefactor nodes and a management layer that provides services such
as data integrity, high performance, load balancing, and impact control. The FreeLoader prototype demonstrated that in addi-
tion to the space aggregation benefit, it was able to deliver higher data access rates than traditional storage facilities available
in scientists’ local computing environments. This is mainly attributed to novel data striping techniques that aggregate a work-
station’s network communication bandwidth and local I/O bandwidth. The authors also show that security features such as
data encryptions and integrity checks can be easily added asfilters for interested clients.

Compared to more general-purpose distributed storage systems built on top of contributed devices, such as Farsite [12]
and two projects to be discussed later in this chapter (Kosha[17] and TSS [68], FreeLoader is a more specialized system
specifically targeting local scientific data processing. Therefore, it does not support full file system functionality,and only
implements a very small set of file I/O interfaces to enable Unix-style read/write operations in addition to whole-file oper-
ations. On the other hand, it is a very light-weight softwarecache/scratch space tailored for handling transient uses of bulk
scientific data. In addition, the performance impact on the native workload of donor machines is small and can be effectively
controlled. Further, we show that Finally, we demonstrate how legacy applications can use the FreeLoader API to store and
retrieve datasets. Also, FreeLoader is designed with the capability to dynamically control its resource use to yield tonative
workloads on storage contributors. This is particularly important as FreeLoader is intended for data-intensive computing
in desktop environments, where owners of contributed benefactors also conduct their day-to-day activities. The original
FreeLoader development involved performance impact study[70] and a systematic performance impact control mechanism
was proposed in a related study [66].

3.3 stdchk

stdchk, a checkpoint storage system, extends the concept ofFreeLoader aggregate storage checkpointing operations in
HPC applications. Much like how stdin and stdout input/output systems are ubiquitously available to applications, stdchk
argues that checkpointing is an I/O intensive operation, requiring a special ‘data path’. It ensures that this data pathis be made
available to HPC applications as a low-cost checkpoint-optimized storage system. stdchk is optimized for the workload: high-
speed writes of incremental versions of the same file. stdchkcan be used within a desktop grid, where the loosely connected
workstation storage is aggregated; it can be used within a cluster where node-local storage can be aggregated; and finally,
it can also be used to aggregate memory from processor cores in supercomputers. To this end, stdchk introduces several
optimizations to render itself ‘checkpoint-friendly’ to HPC applications:

• High write throughput.stdchk exploits the I/O parallelism that exists inherentlyin the aggregated storage to provide
a suite of write-optimized protocols that enable checkpointing at throughputs higher than what is feasible in current
settings.

• Support for incremental versioning.stdchk minimizes the size of the data stored using a novel solution to incremen-
tal checkpointing that exploits the commonality between successive checkpoint images. Since checkpoint images are
chunked and striped in stdchk, it can afford to perform the following optimizations. First is a fixed-size compare-by-
hash (FsCH) technique, which divides a file into equal-sizedchunks, hashes them and uses the hashes to detect similar
chunks. The main weakness of this approach is that it is not resilient to file insertions and deletions. An insertion of
only one byte at the beginning of a file prevents this technique from detecting any similarity. Second is content-based
compare-by-hash (CbCH). Instead of dividing the file into equal-sized blocks, CbCH detects block boundaries based
on content. Compared to FsCH, this approach is more computationally intensive. stdchk experiments have shown
that system-level checkpointing can benefit significantly from incremental checkpointing compared to application or
library-level checkpointing. A desired side-effect of incremental checkpointing is that it enables applications to check-
point at a finer granularity.

• Tunable data availability and durability.Since stdchk aggregates storage contributions from transient nodes, standard
replication techniques are used to ensure data availability and durability. Further, applications can decide the level of
data availability/durability they require. The level of redundancy needs to be balanced against overall space availability
as that is a finite amount and dictates the serviceability of the storage system. stdchk choose replication against erasure
coding for improving the availability of datasets as erasure coding is a compute intensive operations and applications
are eager to return to perform useful computation rather than spending more time checkpointing. Consequently, stdchk
conducts the replication in the background.

7



• Tunable write semantics.Additionally, stdchk gives applications the ability to choose between a write semantic that
is pessimistic (the system call returns only after the desired level of replication is achieved and, consequently, slower)
or optimistic (return immediately after data has been written safely once, while replication occurs in the background).
This further gives applications control over the write throughput vs. data durability tradeoff.

• Automatic pruning of checkpoint images.stdchk offers efficient space management and automatic pruning of check-
point images. These data management strategies lay the foundation for efficient handling of transient data.

• Easy integration with applications.stdchk provides a traditional file system API, using the FUSE(File system in user
space) Linux kernel module, for easy integration with applications. Since the entire checkpoint storage is mounted as
a file system, applications can save snapshot data seamlessly. This tranparency comes with a small performance cost
in the write operations. However, the flexibility offered outweighs this cost.

In extreme-scale systems, where there is no node-local disks, stdchk can be employed by aggregating memory contri-
butions from the user’s allocated processor cores. It is common in HPC job submission systems for jobs to oversubscribe
for processors to prepare for failure. For example, depending on the failure rate of the machine, a particular job might ask
for 12,000 cores instead of the 10,000 cores that it actuallyneeds. The remaining cores are used for failing over processes.
stdchk can create an aggregated memory device built out of such pools. This approach has the advantage that it uses the
application’s own over subscribed processor allocation. However, in such an instantiation, the data striped on to stdchk is
drained to a central, stable parallel file system to make roomfor additional checkpoint data. Thus, stdchk can be used to
improve the I/O bandwidth in data intensive applications.

3.4 BADFS

BAD-FS [15] is a distributed file system for handling large, I/O intensive batch workloads on remote computing clusters
distributed across the wide area. BAD-FS facilitates staging of data on distributed storage resources, by allowing theusers to
explicitly specify the data needs of their applications andthen factoring the user specifications in data scheduling decisions.
BAD-FS differs from traditional distributed file systems inits approach to control data placement and movement. It exposes
decisions regarding consistency, caching and replication, commonly hidden inside a file system, to the external scheduler.
Using I/O scoping, BAD-FS reduces traffic over the wide area network. Through capacity-aware scheduling, BAD-FS avoids
mismatch between jobs and resources, consequently preventing overflowing storage and thrashing caches. The interface
exposed by BAD-FS can be leveraged to allow applications to dictate placement of data.

BAD-FS can serve as a enabler for supporting large-scale data staging and offloading. For instance, a user can specify the
set of input dataset, locations where the dataset is stored or can be replicated, and locations for storing the output dataset. The
scheduler can then stage the data from the specified locations before a job is started, and move the output data to the output
locations after completion of the job. Additionally, although not done in BAD-FS, such interfaces can be extended with an
automatic monitoring system to allow for dynamic placementof data even in the absence of explicit information from the
application.

3.5 dCache

dCache [8] is a distributed storage system to store large datasets that are disseminated from experiments such as the
CERN’s LHC. It uses a set of commodity nodes to store large datasets and provides access to clients using standard access
protocols. Datasets are stored in their entirety on a node and may even be replicated to protect against failure of the commodity
node. dCache can be tied to a tertiary storage system and can move data back and forth using LRU schemes. It offers a
uniform namespace within a single file system tree for data stored across these storage elements.

Data is usually placed onto pools using pool attraction models that stores data on nodes based on properties such as
reliability. Certain pools can be dedicated for interactions with tertiary storage systems. Pools can also communicate between
each other to shuffle datasets in order to avoid hot spots in data accesses. Such an approach is used to load balance the dCache
storage system.

dCache serves as an excellent use case for storing large dataon commodity systems and can help immensely on end-user
analysis. Many site have numerous commodity system that canbe pooled together to offer a collective storage. However, the
I/O throughput offered is limited to the bandwidth capabilities of the individual storage nodes and dCache does not exploit
parallelism among the nodes to perform striping.

dCache offers support of grid transfers using the gsiftp [16] mechanims. It also supports the Storage Resource Manager
(SRM) [64] protocol. These features make dCache a good candidate for data intensive science and extreme-scale data
movement.

There are several similarities with FreeLoader and GFS in how these systems aggregate storage. Contrary to dCache, these
system chunk the datasets and stripe them for better throughput. Replication is performed at the chunk-level and not at the

8



dataset-level as in dCache. While chunk-level operations offer more flexibility, they also entail more management overhead.
dCache is fundamentally optimized for providing a large storage space for bulk datasets and accomplishes its goals elegantly.

3.6 IBP

The Internet Backplane Protocol (IBP) [52] is a middleware for managing distributed storage depots. The basic premise
behind IBP is to make use of storage in the network fabric. Just like how packets are buffered at intermediate routers on their
way from source to destination in the internet, IBP byte arrays are forwarded from one storage depot to another. Therefore,
IBP offers a staged approach to data movement, providing application managed communication buffers in the network with
a temporal validity. This setup provides a logistical networking infrastructure supporting the scheduling and optimization of
data movement for end-to-end applications.

IBP supports the following key functionality:

• Ability to allocate byte arrays for storing data. These allocations can be temporal or permanent; the client can specify
whether the allocation is volatile or stable to mean whetherthe server can revoke the allocatio or not.

• Moving data from senders to byte arrays
• Moving data from byte arrays to receivers

These features are supported using several procedure calls, based on TCP/IP, that help expose a storage to the IBP infrastruc-
ture. Distributed storage on a wide-area scale is usually managed and operated using standard file systems with a uniform
namespace and strict semantics. Instead, IBP byte arrays can be viewed as files that reside in the network IBP offers appli-
cations ways to read and write byte arrays on other depots, thereby creating a shared network resource for storage. IBP byte
arrays are append only. IBP offers exNodes to aggregate storage resource across depots to present an aggregate file service
over the network. This allows users to interact with IBP infrastructure at a higher-level and not using lower-level services
such as storing data in the network. This is similar to users not worrying about disk blocks in file systems

The IBP approach can be used to stage data closer where it is needed or to allow applications to perform their own routing,
steering the placement of data in a wide-area setting. Consider the staging in and out of job data between end-users and HPC
centers. IBP storage depots can be used as a means to deliver data through the intermediate depots, while also using them as
fail-over points in case of resouce failure. Storage depotscan be used to move data close to either the end-user or an HPC
center. Thus IBP’s ability to exploit locality to offer a staged delivery can be used as an alternative to point-to-pointtransfers
in data intensive computing.

IBP’s ability to stage data closer to end-user is also similar to FreeLoader’s client-side caching. However, IBP is not
designed as a locality-aware cache in that users need to explicitly assign temporal validity to files and retention is notbased
on frequent accesses.

IBP’s infrastructure can also be used for distributed checkpointing. As mentioned earlier, checkpoint images are stored
on disk within a LAN. However, IBP can be used to store checkpoints in a distributed environment, providing more fault
tolerance for snapshot data. This allows end-user applications to control the locations and level of redundancy for checkpoint
data. Unlike stdchk, IBP is not specifically geared for checkpointing, but it serves as a nice storage place for checkpoint
images.

3.7 Tactical Storage Systems

One key challenge in aggregating distributed (and often heterogeneous) storage hardware for data-intensive scientific
applications is to choose a balanced level for I/O interfaces. While systems with a tightly coupled storage hierarchy pro-
vides opportunities to deliver highly optimized performance and low overhead, such systems usually lack the portability or
flexibility to work with diverse applications/hardware, orto adapt to changes.

TSS (Tactical Storage System) [68] was proposed with the goal of enabling flexible upper-level storage system estab-
lishment, by separating storage abstractions from physical storage resources. The TSS authors observed that shared file
systems in cluster environments often become major limiting factors in the overall system productivity, in terms of policy
constraints, capacity limits, and bandwidth bottlenecks.A TSS allows users to build a variety of storage structures (file
systems, databases, or caches), with desired features (distributed and/or shared), on top of storage resources contributed by
workstation or cluster owners. TSS was deployed at the University of Notre Dame to support two scientific applications with
different storage needs and data use patterns.

Like FreeLoader, TSS operates at user level. Its authors argue that this allows great flexibility in creating different high-
level storage abstractions, while the performance disadvantage caused by higher latency and overhead is reasonably small.
Its basic storage unit is a file server that exports a Unix-like I/O interface, running on the machine participating in storage
aggregation.

9



However, there are several major distinctions between TSS and FreeLoader. First, TSS is a more loosely coupled and
general system compared with FreeLoader. It is intended forbuilding diverse storage abstractions on top of a shared resource
layer with well-known and consistent interfaces. FreeLoader, on the other hand, employs an architecture closer to the Google
File System, with a single node acting as central manager andmeta-data server and participating machines serving chunks
of data. Second, TSS aims at flexibility and versatility, therefore its design focus was placed on resource virtualization and
abstraction construction (with mechanisms such asadaptors, which connect various abstractions to the resource layer). In
contrast, FreeLoader is intended to be a shared cache facilitating fast data processing and consumption on desktop worksta-
tions, whose design is focused on performance and scalability issues and adopts throughput optimization techniques such
as striping. Finally, the TSS prototype has the capability of building a shared file system with Unix-like interfaces, while
FreeLoader supports a rather small set of Unix file I/O operations.

3.8 P2P Techniques in Distributed Storage

Peer-to-peer (p2p) overlay networks were initially popularized by file sharing systems such as Napster [48], Gnutella [31],
and Kazaa [63]. The main attraction of these systems at the time was their ability to manage a large number of users without
any centralized control, and user anonymity that guaranteed freedom from fears of censorship [24]. However, these first-
generation systems used centralized servers, proprietaryprotocols, or controlled flooding for communication among peers
in the overlay and for searching data. This led to drawbacks such as bandwidth wastage, lack of resiliency, and dependence
on external entities such asbootservers. However, studies of p2p traffic on these networks showed their promise as storage
substrates: the primary application of these systems was file sharing [41].

The second generation p2p networks imposed some form of structure on the topology of the overlay and formalized
the overlay building and maintenance protocols. Examples of such structured p2p overlays include CAN [54], Chord [65],
Pastry [56], and Tapestry [75], and have demonstrated the ability to serve as a robust, fault-tolerant, and scalable substrate
for a variety of applications [57, 28, 21, 76, 74, 36, 53, 18].

Structured p2p overlay networks essentially implement adistributed hash table(DHT) abstraction. Each node in a struc-
tured p2p network has a unique node identifier (nodeId) and each data item stored in the network has a unique key. The
nodeIds and keys live in the same name space, and each key is mapped toa unique node in the network. Thus DHTs allow
data to be inserted without a-priori knowledge of where it will be stored, and requests for data to be routed without requiring
any knowledge of where the corresponding data items are stored, laying the foundation for developing p2p storage systems.

Scalable distributed [35] or serverless [14, 69] file systems provide some p2p aspects. There are also several wide-area
file system projects such as Ivy [47], Farsite [13], and Pangaea [58], which also provide reliability.

The basic data sharing is extended by providing strong persistence and reliability in p2p distributed storage projects, such
as Pond [55] which is a prototype of Oceanstore [38], CFS [28], and PAST [57].

PAST [57] is a large-scale, Internet-based, storage utility, which uses the p2p network provided by Pastry [56] as a
communication substrate. PAST provides scalability, highavailability, persistence and security. Any online machine can
act as a PAST node by installing the PAST software, and joining the PAST overlay network. A collection of PAST nodes
forms a distributed storage facility, and store a file as follows. First, a unique identifier for the file is created by performing
a universal hashing function such as SHA-1 [11] on the file name. Next, this unique identifier is used as a key to route a
message to a destination node in the underlying Pastry network. The destination node serves as the storage point for the
file. Similarly, to locate a file, the unique identifier is created from the file name, and the node on which the file is stored
is determined through Pastry routing. PAST utilizes the excellent distribution and network locality properties inherent in
Pastry. It also automatically negotiates node failures andnode additions. PAST employs replication for fault tolerance, and
achieves load-balancing among the participating nodes. Our work builds on the functions provided by PAST to store and
retrieve portions of file, and adapts the core PAST functionsto handle large files.

CFS [28] provides a scalable, wide-area storage infrastructure for content distribution. CFS exports a file system (hier-
archical organization of files) interface to clients. It distributes a file over many servers by chopping every file into small
(8 KB) blocks thereby solving the problem of load balancing for the storage and the retrieval of popular big files. This also
results in higher download throughput for big files, which can be retrieved in parallel from many nodes. The component that
stores data is referred to as a publisher. A publisher identifies a data block by a hash of its contents, and also makes this hash
value known for others. Similarly, a client uses the identifier hash of a block and Chord [65] routing to locate and retrieve the
block. To ensure authenticity of retrieved data, each blockis signed using the publisher’s well known public-key. Also, to
maintain data integrity, blocks can only be updated by theirpublishers. Finally, CFS deals with fault tolerance by replicating
each data block onk successors, where one successor is made in charge of regenerating new replicas when existing ones fail.

These systems share the goal of using peer nodes to establisha participant-based contributory storage facility, that can be
used to support decentralized data delivery and efficient staging in the context of data intensive computing.

10



Finally, systems such as Kosha [18] and TFS [23] provide transparent access to p2p-storage. In the following, we discuss
Kosha in more detail.

3.8.1 Kosha

Kosha [18] provides a Network File System interface [59, 20]to a p2p storage system, and allows users and applications
to transparently access their distributed files using a virtual directory hierarchy.

The design of Kosha is aimed at providing storage for individual participating sites consisting of multiple nodes, e.g.,
clusters connected to the grid. It provides an economical and fault-tolerant alternative to the dedicated storage within a single
administrative domain. Kosha instances can provide sustainable intermediate storage locations where data can be stored in a
wider end-user data-delivery scheme.

Kosha aims to utilize the cheap storage that is available in targeted environments to create a distributed file system, and to
provide features of location transparency, mobility transparency, load balancing, and high availability through filereplication
and transparent fault handling. These features allow Koshato run on components that can fail often. For deployability and
transparency, Kosha retains the widely used NFS semantics,so that users and applications can access the distributed file
system without any changes to their applications.

Kosha organizes the participating nodes into a structured p2p overlay, and uses NFS facilities to make the files available
across peers. It ensures that the location of the files remains transparent to the user. Unique to the design of Kosha is that
instead of distributing individual files over the distributed storage provided by the nodes in the p2p overlay, it distributes at
the level of directories, i.e., files in the same directory are by default stored in the same node as that directory. Kosha also
aim to leveraging unused storage space on resources available in academic or corporate settings, where a lot of disk space is
wasted on desktop machines.

In Kosha, the participating nodes are assumed to run NFS servers, so that their contributed disk space can be accessed
via NFS. It is assumed that only the system administrator hasfull access to these nodes, and the users cannot modify the
system arbitrarily. Various file operations performed are handled as follows. First, Kosha determines the node on whicha file
is stored by performing a DHT mapping on the file name. Second,the NFS Remote Procedure Calls (RPC) are redirected
to appropriate remote nodes. Third, the receiving node performs the operation and returns the results to Kosha, which then
records the information needed for future accesses. Finally, Kosha returns control to the client. Hence, the client remains
unaware of the underlying RPC forwarding, and the whole operation is transparent, except for a delay caused by the lookup
for the appropriate storage node.

By blending the strengths of NFS with those of p2p overlays, Kosha aggregates unused disk space on many computers
within an organization into a single, shared file system, while maintaining normal NFS semantics. In addition, Kosha provides
location transparency, mobility transparency, load balancing, and high availability through replication and transparent fault
handling. Thus, Kosha effectively implements a “Condor” [43] for unused disk storage.

3.8.2 Intermediate Storage Overlays

P2P systems discussed so far utilize loosely connected resources in local or wide area settings to create distributed storage
systems. Next, we discuss how a number of such distributed storage sites can facilitate decentralized data delivery, staging
and offloading of large data from the perspective of data intensive alaysis within HPC centers.

An issue in using distributed resources is to ensure that data integrity and privacy is preserved during the decentralized
transfer. Thus, users often only rely on trusted sites, which are determined using out-of-band agreements. An example of such
collaboration can be TeraGrid [10] sites. However, research on decentralized staging [45] and offloading [46] has shownthat
even when possible participating sites are known a-priori,their dynamic availability and policies entail a discoveryprocess
for determining the set of sites that can be used for a particular transfer. Given the scale, dynamic, and distributed nature of
intermediate sites, p2p overlays can play a vital role in intermediate site discovery.

P2P Site DiscoveryThe process of selecting intermediate sites (Ni’s) from among the participating sites, which are inter-
ested in the data transfer, proceeds as follows.

A p2p overlay, e.g., Pastry [56], is used to arrange theNi’s. The overlay provides reliable communication with other
participants in the network, even when sites leave or join the system. The participating sites use the overlay to advertise
their availability to other nodes in the overlay using random broadcast [46]. Nodes that receive these messages build local
information about available nodes for offload. A given node can use its own policies and information about a remote node’s
capacity to make a decision regarding whether to use the remote node for the offload. For instance, to discover intermediate
sites, a user site (Ns) sends out a number of discovery messages on the p2p network with random destination addresses.
By virtue of the DHT abstraction provided by p2p routing, themessages are received at someNi’s. On receiving such a
discovery message, anNi replies with its IP address. Thus,Ns discoverstheNi. In case the sharing policies of the user site

11



prohibit it from interacting withNs, the site can simply ignore the discovery messages fromNs. Finally, to accommodate
dynamic preferences ofNi’s, Ns discards information about discoveredNi’s after a specified period of time and starts a fresh
discovery process.

Data-Transfer Paths A decentralized data transfer scheme for HPC centers that ensures timely data delivery and offloading
is achieved using a combination of strategies both at the center as well as the end-user to orchestrate the transfers. To this
end, the discovered intermediate sites (Di’s) provide multiple data flow paths between the center and the end-user, which
lead to better orthogonal bandwidth utilization, faster retrieval speeds, as well as fault-tolerance in the face of failure.

The staging/offloading process works as follows. Let us consider data offloading. Once the job execution completes, the
data-offloading process is initiated. First, the center chooses a number of nodes from the set ofDi’s ordered by available
bandwidth. The exact number of nodes used for this purpose, i.e., the fan-out, is chosen to achieve maximum (pre-specified)
out-bound center bandwidth utilization, or to meet previously agreed-upon offload deadlines. These chosenDi’s serve as
the Level-1 intermediate nodes. Note that the selected fan-out is not static, and can vary depending on the transfer speeds
achieved. Second, the result-data is split into chunks and parallel transfer of the chunks to Level-1 nodes is initiated. Since
the Level-1 nodes support better transfer speeds than the user site, the offload time is expected to be much smaller than a
direct transfer to the user site. Third, Level-1 intermediate nodes may also further transfer data to the Level-2 intermediate
nodes (once again chosen fromDi’s), and so on. Consequently, data flows towards the user site, though it is not pushed to
the user site. Finally, the user site can asynchronously retrieve the data from the Level-N nodes. Decoupling the user site
from the data push path allows the center to offload the data atpeak (pre-specified) out-bound bandwidth without worrying
about the availability (and connection speed) of the user site, while enabling the user site to pull (retrieve) data fromDi’s as
necessary.

Similarly, the process of data staging involves the following steps. Once the data staging is initiated, the user site chooses
a number of nodes from the set ofDi’s (fan-out) ordered by available bandwidth. The cardinality of the fan-out is chosen
to stage-in all the necessary data before the predicted job start time. These chosenDi’s serve as the Level-S1 intermediate
nodes. Once again, the selected fan-out is not static, and can vary depending on the actual transfer speeds and the impending
deadline. The staging service monitors the changing bandwidths periodically (using NWS [73]) to determine if a chosen
fan-out needs to be increased. Next, the input data is split into chunks and parallel transfer of the chunks to Level-S1 nodes
is initiated. The transfer may also involve further levels of intermediate nodes (up to Level-SN ). Alternatively, depending on
the availability of intermediate nodes, the user site can also stage the data to Level-SN nodes much earlier than the deadline.

As the job startup deadline approaches, the close proximityof the Level-SN nodes to the center allows them to quickly
move the input data to the center’s scratch space. Also, thisdesign allows the Level-SN nodes to stage the data at peak
(pre-specified) bandwidth at the most appropriate time without worrying about the availability (and connection speed)of the
submission site.

The use of intermediate nodes in the decentralized data transfer systems provide multiple data-flow paths between the
center and the user site, leading to several alternative options for data delivery. For instance, data may be replicatedacross
differentDi’s during the transfer from one level to the other. This will allow for pulling data from a number of locations when
needed, thus providing fault tolerance against node failure, as well as better utilization of the available orthogonalbandwidth.
Finally, the schedule can also be used to simultaneously deliver data to multiple interested sites in the network.

The use of intermediate nodes is similar to that of IBP. IBP offers a data distribution infrastructure with a set of strategically
placed resources (storage deopts) to move data, and implement what is referred to as logistical netwroking. The intermediate
storage overlay also exploits the presence of pre-installed storage nodes for data delivery as and when they are available.
However, it differs significantly in its attempt to combine both a staged as well as a decentralized data delivery. The induction
of user-specified nodes also allows the system to optimize the data delivery on a per user basis, which is not possible with
IBP. Further, it strives to meet a deadline in delivering as well as in timely offloading from the HPC center.

References
[1] UC/ANL Teragrid Guide.http://www.uc.teragrid.org/tg-docs/user-guide.html#disk, 2004.
[2] Earth system grid. http://www.earthsystemgrid.org, 2006.
[3] NCCS.GOV File Systems.http://info.nccs.gov/computing-resources/jaguar/file-systems, 2007.
[4] Laser Interferometer Gravitational-Wave Observatory. http://www.ligo.caltech.edu/, 2008.
[5] National Institute of Computational Sciences.http://www.nics.tennessee.edu/computing-resources/kraken, 2008.
[6] Spallation Neutron Source.http://www.sns.gov/, 2008.
[7] Sun constellation linux cluster.http://www.tacc.utexas.edu/resources/hpcsystems/#constellation, 2008.
[8] dCache.ORG.http://www.dcache.org/, 2009.
[9] National Center for Computational Sciences.http://www.nccs.gov/, 2009.

[10] Nsf teragrid.http://www.teragrid.org, 2009.

12



[11] F. 180-1. Secure Hash Standard. Technical Report Publication 180-1, Federal Information Processing Standard (FIPS), NIST, US
Department of Commerce, Washington D.C., Apr. 1995.

[12] A. Adya, W. Bolosky, M. Castro, R. Chaiken, G. Cermak, J.Douceur, J. Howell, J. Lorch, M. Theimer, and R. Wattenhofer. FARSITE:
Federated, available, and reliable storage for an incompletely trusted environment. InProceedings of the 5th Symposium on Operating
Systems Design and Implementation, 2002.

[13] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken,J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P. Wattenhofer.
FARSITE: Federated, Available, and Reliable Storage for anIncompletely Trusted Environment. InProc. 5th USENIX OSDI, pages
1–14, Boston, MA, Dec. 2002.

[14] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S. Roselli, and R. Y. Wang. Serverless network file systems. ACM
Transactions on Computer Systems, 14(1):41–79, 1996.

[15] J. Bent, D. Thain, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and M. Livny. Explicit control in a batch-aware distributed file
system. InProc. 1st USENIX NSDI, pages 365–378, San Francisco, CA, Mar. 2004.

[16] J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke. GASS: A data movement and access service for wide area computing
systems. InProceedings of the Sixth Workshop on I/O in Parallel and Distributed Systems, 1999.

[17] A. Butt, T. Johnson, Y. Zheng, and Y. Hu. Kosha: A peer-to-peer enhancement for the network file system. InProceedings of
Supercomputing, 2004.

[18] A. R. Butt, T. A. Johnson, Y. Zheng, and Y. C. Hu. Kosha: A peer-to-peer enhancement for the network file system.Journal of Grid
Computing: Special issue on Global and Peer-to-Peer Computing, 4(3):323–341, 2006.

[19] B. Calder, A. Chien, J. Wang, and D. Yang. The Entropia virtual machine for desktop grids. InProceedings of the 1st ACM/USENIX
International Conference on Virtual Execution Environments, 2005.

[20] B. Callaghan.NFS Illustrated. Addison-Wesley Longman, Inc., Essex, UK, 2000.
[21] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. Scribe: A large-scale and decentralised application-level multicast

infrastructure.IEEE Journal on Selected Areas in Communications (JSAC) (Special issue on Network Support for Multicast Commu-
nications), 20(8):100–110, 2002.

[22] A. Chien, B. Calder, S. Elbert, and K. Bhatia. Entropia:Architecture and performance of an enterprise desktop gridsystem.Journal
of Parallel and Distributed Computing, 63(5), 2003.

[23] J. Cipar, M. D. Corner, and E. D. Berger. TFS: A transparent file system for contributory storage. InProc. 5th USENIX FAST, pages
215–229, San Jose, CA, Feb. 2007.

[24] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A Distributed Anonymous Information Storage and Retrieval System,
1999.http://freenetproject.org/freenet.pdf.

[25] J. W. Cobb, A. Geist, J. A. Kohl, S. D. Miller, P. F. Peterson, G. G. Pike, M. A. Reuter, T. Swain, S. S. Vazhkudai, and N. N.
Vijayakumar. The neutron science teragrid gateway: a teragrid science gateway to support the spallation neutron source: Research
articles.Concurrency and Computation : Practice and Experience., 19(6):809–826, 2007.

[26] Conseil Européen pour la Recherche Nucléaire (CERN). LHC– the large hadron collider, July 2007.
http://lhc.web.cern.ch/lhc/.

[27] R. Coyne and R. Watson. The parallel i/o architecture ofthe high-performance storage system (hpss). InProceedings of the IEEE
MSS Symposium, 1995.

[28] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooperative storage with CFS. InProc. SOSP, pages
202–215, Banff, Alberta, Canada, Oct. 2001.

[29] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. InProceedings of the Sixth Symposium on
Operating System Design and Implementation (OSDI’04), 2004.

[30] J. Douceur and W. Bolosky. A large-scale study of file-system contents. InProceedings of SIGMETRICS, 1999.
[31] J. Frankel and T. Pepper. The Gnutella protocol specification v0.4, 2003.

http://www9.limewire.com/developer/gnutella protocol 0.4.pdf.
[32] S. Ghemawat, H. Gobioff, and S. Leung. The Google file system. InProceedings of the 19th Symposium on Operating Systems

Principles, 2003.
[33] M. Gleicher. HSI: Hierarchical storage interface for HPSS. http://www.hpss-collaboration.org/hpss/HSI/.
[34] Hadoop. http://hadoop.apache.org/core/.
[35] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan, R. N. Sidebotham, and M. J. West. Scale and

performance in a distributed file system.ACM Transactions on Computer Systems, 6(1):51–81, 1988.
[36] Y. C. Hu, S. M. Das, and H. Pucha. Exploiting the Synergy between Peer-to-Peer and Mobile Ad Hoc Networks. InProc. HotOS IX,

May 2003.
[37] A. Iamnitchi, M. Ripeanu, and I. Foster. Small-world file-sharing communities. InInfocom, 2004.
[38] J. Kubiatowicz et al. Oceanstore: An architecture for global-scale persistent store. InProc. ASPLOS, pages 190–201, Cambridge,

MA, Nov. 2000.
[39] J. Lee, X. Ma, R. Ross, R. Thakur, and M. Winslett. RFS: Efficient and flexible remote file access for MPI-IO. InProceedings of the

IEEE International Conference on Cluster Computing, 2004.
[40] J. Lee, X. Ma, M. Winslett, and S. Yu. Active buffering plus compressed migration: An integrated solution to parallel simulations’

data transport needs. InProceedings of the 16th ACM International Conference on Supercomputing, 2002.
[41] N. Leibowitz, A. Bergman, R. Ben-Shaul, and A. Shavit. Are file swapping networks cacheable? Characterizing p2p traffic. In Proc.

7th International Workshop on Web Content Caching and Distribution (WCW7), Boulder, CO, August 2002.
[42] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of idle workstations. InProceedings of the 8th International Conference on

Distributed Computing Systems, 1988.
[43] M. J. M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - A hunter of idle workstations. InProc. ICDCS, pages 104–111, San Jose,

13



CA, June 1988.
[44] X. Ma, S. Vazhkudai, V. Freeh, T. Simon, T. Yang, and S. L.Scott. Coupling prefix caching and collective downloads forremote data

access. InProceedings of the ACM International Conference on Supercomputing, 2006.
[45] H. Monti, A. R. Butt, and S. S. Vazhkudai. Just-in-time staging of large input data for supercomputing jobs. InProc. ACM Petascale

Data Storage Workshop, Austin, TX, Nov. 2008.
[46] H. Monti, A. R. Butt, and S. S. Vazhkudai. Timely offloading of result-data in hpc centers. InProc. 22nd ACM International

Conference on Supercomputing (ICS’08), Kos, Greece, Jun. 2008.
[47] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy: A read/write peer-to-peer file system. InProc. 5th USENIX OSDI, pages

31–34, Boston, MA, Dec. 2002.
[48] Napster. http://www.napster.com/.
[49] National center for biotechnology information. http://www.ncbi.nlm.nih.gov/.
[50] E. J. Otoo, D. Rotem, and A. Romosan. Optimal file-bundlecaching algorithms for data-grids. InProceedings of Supercomputing,

2004.
[51] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure trends in a large disk drive population. InProc. USENIX FAST. USENIX

Association, 2007.
[52] J. Plank, M. Beck, W. Elwasif, T. Moore, M. Swany, and R. Wolski. The Internet Backplane Protocol: Storage in the network. In

Proceedings of the Network Storage Symposium, 1999.
[53] H. Pucha, S. M. Das, and Y. C. Hu. Imposing route reuse in mobile ad hoc network routing protocols using structured peer-to-peer

overlay routing.IEEE Transactions on Parallel and Distributed Systems, 17(12):1452–1467, 2006.
[54] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A Scalable Content-Addressable Network. InProc. SIGCOMM,

San Diego, CA, Aug. 2001.
[55] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubiatowicz. Pond: The Oceanstore prototype. InProc. 2nd USENIX

FAST, pages 1–14, San Francisco, CA, Dec. 2003.
[56] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer systems. InProc.

IFIP/ACM Middleware, pages 329–350, Heidelberg, Germany, Nov. 2001.
[57] A. Rowstron and P. Druschel. Storage management and caching in PAST, a large-scale, persistent peer-to-peer storage utility. In

Proc. SOSP, pages 188–201, Chateau Lake Louise, Banff, Canada, Oct. 2001.
[58] Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam. Taming aggressive replication in the Pangaea wide-area file system. In

Proc. 5th USENIX OSDI, pages 15–30, Boston, MA, Dec. 2002.
[59] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and implementation of the Sun network file system.In Proc.

Summer USENIX, pages 119–130, Portland, OR, June 1985.
[60] B. Schroeder and G. A. Gibson. Disk failures in the real world: what does an mttf of 1,000,000 hours mean to you? InProc. USENIX

FAST, 2007.
[61] Sloan digital sky survey. http://www.sdss.org, 2005.
[62] S. Shah and J. Elerath. Reliability analysis of disk drive failure mechanisms.RAMS, 2005.
[63] Sharman Networks. Kazaa Media Desktop, 2004.http://www.kazaa.com/index.htm.
[64] A. Shoshani, A. Sim, and J. Gu. Storage resource managers: Essential components for the grid. In J. Nabrzyski, J. Schopf, and

J. Weglarz, editors,Grid Resource Management: State of the Art and Future Trends, 2003.
[65] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A Scalable Peer-to-peer Lookup Servicefor Internet

Applications. InProc. SIGCOMM, San Diego, CA, Aug. 2001.
[66] J. Strickland, V. Freeh, X. Ma, and S. Vazhkudai. Governor: Autonomic throttling for aggressive idle resource scavenging. In

Proceedings of the 2nd IEEE International Conference on Autonomic Computing, 2005.
[67] A. Szalay and J. Gray. The world-wide telescope.Science, 293(14):2037–2040, 2001.
[68] D. Thain, S. Klous, J. Wozniak, P. Brenner, A. Striegel,and J. Izaguirre. Separating abstractions from resources in a tactical storage

system. InProceedings of Supercomputing, 2005.
[69] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A scalable distributed file system. InProc. SOSP, pages 224–237, Saint-Malo,

France, Oct. 1997.
[70] S. Vazhkudai, X. Ma, V. Freeh, J. Strickland, N. Tammineedi, and S. Scott. Freeloader: Scavenging desktop storage resources for

bulk, transient data. InProceedings of Supercomputing, 2005.
[71] S. Vazhkudai, X. Ma, V. Freeh, J. Strickland, N. Tammineedi, T. Simon, and S. Scott. Constructing collaborative desktop storage

caches for large scientific datasets.ACM Transactions on Storage (TOS), 2(3):221–254, 2006.
[72] S. Vazhkudai, J. Schopf, and I. Foster. Predicting the performance of wide-area data transfers. InProceedings of the 16th Int’l

Parallel and Distributed Processing Symposium (IPDPS 2002), 2002.
[73] R. Wolski, N. Spring, and J. Hayes. The Network Weather Service: A distributed resource performance forecasting service for

metacomputing.Future Generation Computing Systems, 15(5):757–768, 1999.
[74] R. Zhang and Y. C. Hu. Borg: A hybrid protocol for scalable application-level multicast in peer-to-peer networks. In Proc. 13th

NOSSDAV Workshop, June 2003.
[75] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An Infrastructure for Fault-Resilient Wide-area Location and Routing.

Technical Report UCB//CSD-01-1141, U. C. Berkeley, Apr. 2001.
[76] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. Kubiatowicz. Bayeux: An Architecture for Scalable and Fault-tolerant

Wide-Area Data Dissemination. InProc. 11th NOSSDAV Workshop, June 2001.

14


